Norspermidine changes the basic structure of S. mutans biofilm

نویسندگان

  • Meizhen Ou
  • Junqi Ling
چکیده

The factors regulating the assembly of the three-dimensional structure of Streptococcus mutans biofilms remain obscure. Polyamines are essential in biofilm formation of certain bacteria. Norspermidine, an unusual polyamine, has been a controversial polyamine that can lead to biofilm disassembly. However, the role of norspermidine in S. mutans biofilms remains unknown. Therefore, the present study investigated the impact of norspermidine on S. mutans biofilms. The different architectures of the biofilms in norspermidine and control groups indicated that the basic units, bacteria‑exopolysaccharide units (BEUs), represent the exopolysaccharide (EPS) and bacterial assembly pattern in S. mutans biofilms. In addition, norspermidine inhibited S. mutans biofilm formation and changed the basic composition of the biofilm, which led to an unusual EPS architecture. Therefore, 5 mM norspermidine inhibited biofilm formation both by decreasing the rate of cell viability and changing the biofilm structure. Gene‑expression microarray analysis indicated that the formation of an irregular architecture in the norspermidine group was potentially attributable to the downregulation of elements of the quorum‑sensing system (by 2.7‑15‑fold). The present study suggested that the BEUs are a basic structure of S. mutans biofilm and its assembly is regulated majorly by the quorum‑sensing system. Norspermidine can lead to structure change in BEUs by influencing S. mutans quorum-sensing system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated levels of the norspermidine synthesis enzyme NspC enhance Vibrio cholerae biofilm formation without affecting intracellular norspermidine concentrations.

Biofilm formation in Vibrio cholerae is in part regulated by norspermidine, a polyamine synthesized by the enzyme carboxynorspermidine decarboxylase (NspC). The absence of norspermidine in the cell leads to a marked reduction in V. cholerae biofilm formation by an unknown mechanism. In this work, we show that overexpression of nspC results in large increases in biofilm formation and vps gene ex...

متن کامل

Effect of Isolated Specific Lytic Phage against Growth and Biofilm Inhibition of Streptococcus mutans and Streptococcus sanguinis Isolated from Decayed Dental Plaque

Background and purpose: Despite advances in oral health and dental industry, tooth decay remains one of the most common oral diseases. One of the new methods to combat dental plaque, which is the main cause of caries, is using specific lytic bacteriophage. This study aimed to investigate the effect of isolated specific lytic phage against growth and biofilm inhibition of Streptococcus mutans an...

متن کامل

Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation

The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS p...

متن کامل

Norspermidine Is Not a Self-Produced Trigger for Biofilm Disassembly

Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biof...

متن کامل

Effects of norspermidine and spermidine on biofilm formation by potentially pathogenic Escherichia coli and Salmonella enterica wild-type strains.

Polyamines are present in all living cells. In bacteria, polyamines are involved in a variety of functions, including biofilm formation, thus indicating that polyamines may have potential in the control of unwanted biofilm. In the present study, the effects of the polyamines norspermidine and spermidine on biofilms of 10 potentially pathogenic wild-type strains of Escherichia coli serotype O103...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016